Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 96(22): 12293-8, 1999 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-10535915

RESUMO

The structure of complexes made from DNA and suitable lipids (lipoplex, Lx) was examined by cryo-electron microscopy (cryoEM). We observed a distinct concentric ring-like pattern with striated shells when using plasmid DNA. These spherical multilamellar particles have a mean diameter of 254 nm with repetitive spacing of 7.5 nm with striation of 5.3 nm width. Small angle x-ray scattering revealed repetitive ordering of 6.9 nm, suggesting a lamellar structure containing at least 12 layers. This concentric and lamellar structure with different packing regimes also was observed by cryoEM when using linear double-stranded DNA, single-stranded DNA, and oligodeoxynucleotides. DNA chains could be visualized in DNA/lipid complexes. Such specific supramolecular organization is the result of thermodynamic forces, which cause compaction to occur through concentric winding of DNA in a liquid crystalline phase. CryoEM examination of T4 phage DNA packed either in T4 capsides or in lipidic particles showed similar patterns. Small angle x-ray scattering suggested an hexagonal phase in Lx-T4 DNA. Our results indicate that both lamellar and hexagonal phases may coexist in the same Lx preparation or particle and that transition between both phases may depend on equilibrium influenced by type and length of the DNA used.


Assuntos
Bacteriófago T4/genética , DNA Viral/química , Técnicas de Transferência de Genes , Lipídeos/química , DNA Viral/genética , Luz , Microscopia Eletrônica/métodos , Espalhamento de Radiação
2.
Nucleic Acids Res ; 27(13): 2699-707, 1999 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10373587

RESUMO

In this work we selected double-stranded DNA sequences capable of forming stable triplexes at 20 or 50 degrees C with corresponding 13mer purine oligonucleotides. This selection was obtained by a double aptamer approach where both the starting sequences of the oligonucleotides and the target DNA duplex were random. The results of selection were confirmed by a cold exchange method and the influence of the position of a 'mismatch' on the stability of the triplex was documented in several cases. The selected sequences obey two rules: (i) they have a high G content; (ii) for a given G content the stability of the resulting triplex is higher if the G residues lie in stretches. The computer simulation of the Mg2+, Na+and Cl-environment around three triplexes by a density scaled Monte Carlo method provides an interpretation of the experimental observations. The Mg2+cations are statistically close to the G N7 and relatively far from the A N7. The presence of an A repels the Mg2+from adjacent G residues. Therefore, the triplexes are stabilized when the Mg2+can form a continuous spine on G N7.


Assuntos
DNA/química , DNA/genética , Conformação de Ácido Nucleico , Sequência de Bases , Simulação por Computador , Modelos Moleculares , Dados de Sequência Molecular , Método de Monte Carlo
3.
Nucleic Acids Res ; 25(10): 1965-74, 1997 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9115364

RESUMO

In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Proteínas Serina-Treonina Quinases , Animais , Sequência de Bases , Pegada de DNA , Camundongos , Mutagênese Insercional , Potássio , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-pim-1 , Proto-Oncogenes , Purinas , Pirimidinas , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 24(19): 3858-65, 1996 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-8871568

RESUMO

G,A-containing purine oligonucleotides of various lengths form extremely stable and specific triplexes with the purine-pyrimidine stretch of the vpx gene [Svinarchuk,F., Monnot,M., Merle,A., Malvy,C. and Fermandjian,S. (1995) Nucleic Acids Res., 22, 3742--3747]. The potential application of triple-helix-forming oligonucleotides (TFO) in gene-targeted therapy has prompted us to study triplex formation mimicking potassium concentrations and temperatures in cells. Triplex formation was tested by dimethyl sulphate (DMS) footprinting, gel-retardation, UV melting studies and electron microscopy. In the presence of 10 mM MgCl2, KCl concentrations up to 150 mM significantly lowered both efficiency (triplex : initial duplex) and rate constants of triplex formation. The KCl effect was more pronounced for 11mer and 20mer TFOs than for 14mer TFO. Since the dissociation half-life for the 11mer TFO decreases from 420 min in the absence of monovalent cations to 40 min in the presence of 150 mM KCI, we suggest that the negative effect could be explained by a decrease in triplex stability. In contrast, for the 20mer TFO no dissociation of the triplex was observed during 24 h of incubation either in the absence of monovalent cations or in the presence of 150 mM KCl. We suppose that in the case of the 20mer TFO the negative effect of KCI on triplex formation is probably due to the self-association of the oligonucleotide in competitive structures such as parallel duplexes and/or tetraplexes. This negative effect may be overcome by the prior formation of a short duplex either on the 3'- or 5'-end of the 20mer TFO. We refer to these partial duplexes as 'zipper' TFOs. It was demonstrated that a 'zipper' TFO can form a triplex over the full length of the target, thus unzipping the short complementary strand. The minimal single-stranded part of the 'zipper' oligonucleotide which is sufficient to initiate triplex formation can be as short as three nucleotides at the 3'-end and six nucleotides at the 5'-end. We suggest that this type of structure may prove useful for in vivo applications.


Assuntos
DNA , Potássio/metabolismo , Sequência de Bases , Cátions Monovalentes , DNA/química , Pegada de DNA , Cinética , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Espectrofotometria Ultravioleta , Temperatura
5.
Nucleic Acids Res ; 24(2): 295-302, 1996 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-8628653

RESUMO

In our previous work we have shown that the oligonucleotide 5'-GGGGAGGGGGAGG-3' gives a very stable and specific triplex with the promoter of the murine c-pim-1 proto-oncogene in vitro[Svinarchuk, F., Bertrand, J.-R. and Malvy, C.(1994)Nucleic Acids Res., 22, 3742-3747]. In the present work, we have tested triplex formation with some derivatives of this oligonucleotide which are designed to be degradation-resistant inside the cells, and we show that phosphorothioate and the oligonucleotide with a 3' terminal amino group are still able to form triplexes. Moreover these oligonucleotides, like the 13mer oligonucleotide of similar composition [Svinarchuk, F., Paoletti, J., and Malvy, C. (1995) J. Biol. Chem., 270, 14068-14071], are able to stabilize the targeted duplex. In vivo DMS footprint analysis after electroporation of the pre-formed triplex into the cell have shown the presence of the triple helix inside the cells. This triplex structure partially blocks c-pim-1 promotor activity as shown by transient assay with a c-pim-1 promoter-luciferase gene construct. To our knowledge these data are the first direct evidence that conditions inside cells are favorable for triplex stability with non-modified oligonucleotides. However we were unable to show triplex formation inside living cells using various methods of oligonucleotide delivery. We suppose that this may be due to the oligonucleotide being sequestered by cellular processes or proteins. Further work is needed to find oligonucleotide derivatives and ways of their delivery to overcome the problem of triplex formation inside the cells.


Assuntos
DNA/metabolismo , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/genética , Animais , Sequência de Bases , Gatos , Linhagem Celular , DNA/química , Eletroporação , Fibroblastos , Regulação da Expressão Gênica , Camundongos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , Proteínas Proto-Oncogênicas c-pim-1 , Purinas/química , Tionucleotídeos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...